Final Exam - Functional Analysis (WIFA-08)

Monday 9 April 2018, 18.30h-21.30h
University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.
2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or " 42 " is not sufficient.
3. If p is the number of marks then the exam grade is $G=1+p / 10$.

Problem $1(6+10+3+3+3=25$ points $)$
Assume $0<w_{k} \leq 1$ for all $k \in \mathbb{N}$ and define the following normed linear space:

$$
\mathcal{W}=\left\{x=\left(x_{1}, x_{2}, x_{3}, \ldots\right): x_{k} \in \mathbb{K}, \sup _{k \in \mathbb{N}}\left|x_{k}\right| w_{k}<\infty\right\}, \quad\|x\|_{\mathcal{W}}=\sup _{k \in \mathbb{N}}\left|x_{k}\right| w_{k}
$$

(a) Prove that $\|\cdot\|_{\mathcal{W}}$ is a norm on \mathcal{W}.
(b) Prove that $\left(\mathcal{W},\|\cdot\|_{\mathcal{W}}\right)$ is a Banach space.
(c) Recall the following Banach space from the lecture notes:

$$
\ell^{\infty}=\left\{x=\left(x_{1}, x_{2}, x_{3}, \ldots\right): x_{k} \in \mathbb{K}, \sup _{k \in \mathbb{N}}\left|x_{k}\right|<\infty\right\}, \quad\|x\|_{\infty}=\sup _{k \in \mathbb{N}}\left|x_{k}\right| .
$$

Show that $\ell^{\infty} \subset \mathcal{W}$ and $\|x\|_{\mathcal{W}} \leq\|x\|_{\infty}$ for all $x \in \ell^{\infty}$.
(d) Assume $\inf _{k \in \mathbb{N}} w_{k}>0$. Prove that $\ell^{\infty}=\mathcal{W}$ and that the norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_{\mathcal{W}}$ are equivalent.
(e) Assume $w_{k}=1 / k$ for all $k \in \mathbb{N}$. Show that the inclusion $\ell^{\infty} \subset \mathcal{W}$ is strict and that the norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_{w}$ are not equivalent on ℓ^{∞}.

Problem $2(4+6+5+5+5=25$ points $)$

Let $(X,\|\cdot\|)$ be an infinite-dimensional Banach space over \mathbb{K} and let $T \in B(X)$ be of the form

$$
T x=f(x) z,
$$

where $f \in X^{\prime}=B(X, \mathbb{K})$ and $z \in X$ are fixed and nontrivial.
(a) Compute $\|T\|$.
(b) Determine all eigenvalues of T.
(c) Show that $T^{n}=f(z)^{n-1} T$ for all $n \in \mathbb{N}$. Turn page for parts (d) and (e).
(d) Assume that $|\lambda|>\|T\|$. Show that

$$
(T-\lambda)^{-1}=-\frac{1}{\lambda}-\frac{1}{\lambda(\lambda-f(z))} T
$$

(e) Determine $\rho(T)$ and hence $\sigma(T)$.

Problem $3(5+3+7+5=20$ points $)$
(a) Formulate the uniform boundedness principle.

Let X and Y be Banach spaces over \mathbb{K} and let $Q: X \times Y \rightarrow \mathbb{K}$ be a bilinear map, i.e. linear in the first entry and linear in the second entry. Assume that:
(i) $\forall x \in X \quad \exists M_{x} \geq 0$ such that $|Q(x, y)| \leq M_{x}\|y\| \forall y \in Y$;
(ii) $\forall y \in Y \exists N_{y} \geq 0$ such that $|Q(x, y)| \leq N_{y}\|x\| \forall x \in X$.

Prove the following statements:
(b) For each nonzero $y \in Y$ the functional $T_{y} \in L(X, \mathbb{K})$ defined by $T_{y}(x)=$ $Q(x, y) /\|y\|$ is bounded;
(c) $\sup _{y \neq 0}\left\|T_{y}\right\|<\infty$;
(d) There exists $K \geq 0$ such that $|Q(x, y)| \leq K\|x\|\|y\|$ for all $x \in X$ and $y \in Y$.

Problem $4(3+7+4+6=20$ points $)$

(a) Formulate the Hahn-Banach Theorem for normed linear spaces.

Let X be a normed linear space, and assume that $V \subset X$ is a finite-dimensional linear subspace. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis for V.
(b) Show that for each $i=1, \ldots, n$ there exists $f_{i} \in X^{\prime}$ such that $f_{i}\left(e_{j}\right)=\delta_{i j}$.
(c) Prove that the linear map

$$
P: X \rightarrow X, \quad P x=\sum_{i=1}^{n} f_{i}(x) e_{i} .
$$

is a projection and bounded.
(d) Prove the following properties:
(i) ker P and ran P are closed;
(ii) ker $P \cap \operatorname{ran} P=\{0\}$;
(iii) $X=\operatorname{ker} P+\operatorname{ran} P$.

End of test (90 points)

Solution of problem $1(6+10+3+3+3=25$ points $)$
(a) Clearly, $\|x\|_{\mathcal{W}} \geq 0$ for all $x \in \mathcal{W}$. If $\|x\|_{\mathcal{W}}=0$, then $\left|x_{k}\right| w_{k}=0$ for all $k \in \mathbb{N}$. Since $w_{k}>0$ it follows that $x_{k}=0$ for all $x \in \mathcal{W}$, which means that $x=0$.
(2 points)
If $\lambda \in \mathbb{K}$ and $x \in \mathcal{W}$, then

$$
\|\lambda x\|=\sup _{k \in \mathbb{N}}\left|\lambda x_{k}\right| w_{k}=\sup _{k \in \mathbb{N}}\left|\lambda \left\|x _ { k } | w _ { k } = | \lambda | \operatorname { s u p } _ { k \in \mathbb { N } } | x _ { k } \left|w_{k}=|\lambda|\|x\|_{\mathcal{W}} .\right.\right.\right.
$$

(2 points)

If $x, y \in \mathcal{W}$, then

$$
\begin{aligned}
\|x+y\|_{\mathcal{W}} & =\sup _{k \in \mathbb{N}}\left|x_{k}+y_{k}\right| w_{k} \\
& \leq \sup _{k \in \mathbb{N}}\left(\left|x_{k}\right|+\left|y_{k}\right|\right) w_{k} \\
& \leq \sup _{k \in \mathbb{N}}\left|x_{k}\right| w_{k}+\sup _{k \in \mathbb{N}}\left|x_{k}\right| w_{k}=\|x\|_{\mathcal{W}}+\|y\|_{\mathcal{W}} .
\end{aligned}
$$

(2 points)

(b) Solution 1. Let x^{n} be a Cauchy sequence in \mathcal{W}. Let $\epsilon>0$ be arbitrary, then there exists $N \in \mathbb{N}$ such that

$$
m, n \geq N \quad \Rightarrow \quad\left\|x^{n}-x^{m}\right\|_{\mathcal{W}} \leq \epsilon,
$$

or, equivalently,

$$
\begin{equation*}
m, n \geq N \quad \Rightarrow \quad\left|x_{k}^{n}-x_{k}^{m}\right| w_{k} \leq \epsilon \quad \text { for all } k \in \mathbb{N} \tag{1}
\end{equation*}
$$

This shows that for fixed $k \in \mathbb{N}$ the sequence $\left(x_{k}^{n}\right)$ is a Cauchy sequence in \mathbb{K}. (2 points)

Since \mathbb{K} is complete there exists $x_{k} \in \mathbb{K}$ such that $x_{k}^{n} \rightarrow x_{k}$ as $n \rightarrow \infty$. Now we define $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ and show that $x \in \mathcal{W}$ and $\left\|x^{n}-x\right\|_{\mathcal{W}} \rightarrow 0$ as $n \rightarrow \infty$. (2 points)

Letting $m \rightarrow \infty$ in equation (1) and using the fact that inequalities are preserved under taking limits gives

$$
n \geq N \quad \Rightarrow \quad\left|x_{k}^{n}-x_{k}\right| w_{k} \leq \epsilon \quad \text { for all } k \in \mathbb{N},
$$

or, equivalently,

$$
\begin{equation*}
n \geq N \quad \Rightarrow \quad\left\|x^{n}-x\right\|_{\mathcal{W}} \leq \epsilon \tag{2}
\end{equation*}
$$

which indeed shows that $x^{n} \rightarrow x$ in \mathcal{W}.
(3 points)
Note that equation (2) shows that $x^{N}-x \in \mathcal{W}$. Since $x^{N} \in \mathcal{W}$ by assumption and the fact that \mathcal{W} is a linear space it follows that $x=x^{N}-\left(x^{N}-x\right) \in \mathcal{W}$ as desired.
(3 points)

Solution 2. Define the following linear map

$$
T: \mathcal{W} \rightarrow \ell^{\infty}, \quad\left(x_{1}, x_{2}, x_{3}, \ldots\right) \mapsto\left(x_{1} w_{1}, x_{2} w_{2}, x_{3} w_{3}, \ldots\right) .
$$

It is clear that T is bijective and isometric, i.e., $\|T x\|_{\infty}=\|x\|_{\mathcal{W}}$.
(3 points)
If x^{n} is a Cauchy sequence in \mathcal{W}, then $T x^{n}$ is a Cauchy sequence in ℓ^{∞}. Since ℓ^{∞} is complete there exists $y \in \ell^{\infty}$ such that $T x^{n} \rightarrow y$. Since T^{-1} is also isometric, and in particular bounded, it follows that $x^{n} \rightarrow T^{-1} y$.

(7 points)

(c) Let $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in \ell^{\infty}$. Since $0<w_{k} \leq 1$ for al $k \in \mathbb{N}$ it follows that $\left|x_{k}\right| w_{k} \leq\left|x_{k}\right|$ for all $k \in \mathbb{N}$ which implies that

$$
\|x\|_{\mathcal{W}}=\sup _{k \in \mathbb{N}}\left|x_{k}\right| w_{k} \leq \sup _{k \in \mathbb{N}}\left|x_{k}\right|=\|x\|_{\infty}<\infty,
$$

which also implies that $x \in \mathcal{W}$.

(3 points)

(d) Let $c:=\inf _{k \in \mathbb{N}} w_{k}>0$ and $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$. We have $c \leq w_{k}$ for all $k \in \mathbb{N}$ so that $c\left|x_{k}\right| \leq\left|x_{k}\right| w_{k}$ for all $k \in \mathbb{N}$. Taking the supremum gives the inequality $c\|x\|_{\infty} \leq\|x\|_{\mathcal{W}}$. Together with part (c) this shows that the norms $\|\cdot\|_{\mathcal{W}}$ and $\|\cdot\|_{\infty}$ are equivalent. This also shows that $\|x\|_{\infty}<\infty$ whenever $\|x\|_{\mathcal{W}}<\infty$ so that $\mathcal{W}=\ell^{\infty}$.

(3 points)

(e) Take $x=(1,2,3,4, \ldots)$, then clearly $\|x\|_{\mathcal{W}}=1$ so that $x \in \mathcal{W}$. However, $x \notin \ell^{\infty}$, which means that the inclusion $\mathcal{W} \subset \ell^{\infty}$ is strict.

(2 points)

Now take $x^{n}=(1,2, \ldots, n, 0,0, \ldots)$. Clearly, $x^{n} \in \mathcal{W} \cap \ell^{\infty}$ and

$$
\frac{\left\|x^{n}\right\|_{\infty}}{\left\|x^{n}\right\|_{\mathcal{W}}}=n \rightarrow \infty .
$$

Hence, there exists no constant $c>0$ such that $c\|x\|_{\infty} \leq\|x\|_{\mathcal{W}}$ for all $x \in \ell^{\infty}$. (1 point)

Solution of problem $2(4+6+5+5+5=25$ points $)$
(a) We have

$$
\|T\|=\sup _{x \neq 0} \frac{\|T x\|}{\|x\|}=\sup _{x \neq 0} \frac{|f(x)|\|z\|}{\|x\|}=\|z\| \sup _{x \neq 0} \frac{|f(x)|}{\|x\|}=\|f\|\|z\| .
$$

(4 points)

(b) Since X is infinite-dimensional we can find $w \in X$ such that z and w are linearly independent. If $f(z)=0$, then $z \in \operatorname{ker} T$. If $f(w)=0$, then $w \in \operatorname{ker} T$. If both $f(z) \neq 0$ and $f(w) \neq 0$, then $x_{0}=f(w) z-f(z) w \neq 0$ (since z and w are linearly independent) and $x_{0} \in$ ker T. This proves that $0 \in \sigma_{p}(T)$.
(3 points)
Assume that $T x=\lambda x$ for some nontrivial $x \in X$, then $f(x) z=\lambda z$. Therefore, $x=c z$ for some constant $c \neq 0$. This gives

$$
f(c z) z=\lambda c z \quad \Rightarrow \quad f(z) z=\lambda z \quad \Rightarrow \quad \lambda=f(z),
$$

which means that $f(z)$ is an eigenvalue of T. Hence, $\sigma_{p}(T)=\{0, f(z)\}$.
(3 points)
(c) For $n=1$ the statement is obvious. Assume that the statement is true for some $n \in \mathbb{N}$, then

$$
\begin{aligned}
T^{n+1} x & =T^{n}(T x) \\
& =f(z)^{n-1} T^{2} x \\
& =f(z)^{n-1} T(f(x) z) \\
& =f(z)^{n-1} f(x) T z \\
& =f(z)^{n-1} f(x) f(z) z \\
& =f(z)^{n} T x,
\end{aligned}
$$

which shows that the statement is also true for $n+1$. By induction the assertion is true for all $n \in \mathbb{N}$.
(5 points)
(d) Assume that $|\lambda|>\|T\|$ so that $\|T / \lambda\|<1$. The geometric series gives

$$
\begin{aligned}
(T-\lambda)^{-1} & =-\frac{1}{\lambda}\left(I-\frac{T}{\lambda}\right)^{-1} \\
& =-\frac{1}{\lambda} \sum_{n=0}^{\infty} \frac{T^{n}}{\lambda^{n}} \\
& =-\frac{1}{\lambda}-\frac{1}{\lambda}\left(\sum_{n=1}^{\infty} \frac{f(z)^{n-1}}{\lambda^{n}}\right) T \\
& =-\frac{1}{\lambda}-\frac{1}{\lambda^{2}}\left(\sum_{n=0}^{\infty} \frac{f(z)^{n}}{\lambda^{n}}\right) T \\
& =-\frac{1}{\lambda}-\frac{1}{\lambda(\lambda-f(z))} T
\end{aligned}
$$

(5 points)
(e) For all $\lambda \in \mathbb{K} \backslash\{0, f(z)\}$ the linear operator

$$
S_{\lambda}=-\frac{1}{\lambda}-\frac{1}{\lambda(\lambda-f(z))} T
$$

is well-defined and bounded since it is a linear combination of two bounded operators (namely the identity and T). Note that

$$
(T-\lambda) S_{\lambda} x=T S_{\lambda} x-\lambda x=f\left(S_{\lambda} x\right) z+x+\frac{1}{\lambda-f(z)} T x
$$

and that

$$
\begin{aligned}
f\left(S_{\lambda} x\right) z & =f\left(-\frac{1}{\lambda} x-\frac{1}{\lambda(\lambda-f(z))} T x\right) z \\
& =f\left(\frac{-(\lambda-f(z)) x-f(x) z}{\lambda(\lambda-f(z))}\right) z \\
& =-\frac{1}{\lambda(\lambda-f(z))}((\lambda-f(z)) f(x)+f(x) f(z)) z \\
& =-\frac{1}{\lambda-f(z)} T x
\end{aligned}
$$

which shows that $(T-\lambda) S_{\lambda}=I$. Likewise, it can be shown that $S_{\lambda}(T-\lambda)=I$. This proves that $(T-\lambda)^{-1}=S_{\lambda} \in B(X)$ for all $\lambda \in \mathbb{K} \backslash\{0, f(z)\}$, which implies that $\mathbb{K} \backslash\{0, f(z)\} \subset \rho(T)$.

(3 points)

On the other hand we already know that $\{0, f(z)\} \subset \sigma(T)$ so we actually have $\rho(T)=\mathbb{K} \backslash\{0, f(z)\}$ and $\sigma(T)=\{0, f(z)\}$.
(2 points)

Solution of problem $3(5+3+7+5=20$ points)
(a) Let X be a Banach space and let Y be a normed linear space. Let $F \subset B(X, Y)$ and assume that the set

$$
M=\left\{x \in X: \sup _{T \in F}\|T x\|<\infty\right\}
$$

is nonmeager. Then the elements $T \in F$ are uniformly bounded:

$$
\sup _{T \in F}\|T\|<\infty
$$

(5 points)
(b) Clearly, T_{y} is linear since Q is linear in the first component for fixed y. For each $x \in X$ we have the following inequality

$$
\left|T_{y}(x)\right|=\frac{|Q(x, y)|}{\|y\|} \leq \frac{N_{y}}{\|y\|}\|x\| .
$$

This implies that T_{y} is a bounded linear operator from X to \mathbb{K}.
(3 points)
(c) For each fixed $y \in Y$ with $y \neq 0$ we have the inequality

$$
\left|T_{y}(x)\right|=\frac{|Q(x, y)|}{\|y\|} \leq \frac{M_{x}\|y\|}{\|y\|}=M_{x} \quad \text { for each } x \in X .
$$

(3 points)

Taking the supremum over $y \in Y \backslash\{0\}$ gives

$$
\sup _{y \neq 0}\left|T_{y}(x)\right|<\infty \quad \text { for each } x \in X
$$

(2 points)

Since X is a Banach space we can apply the uniform boundedness principle to the set $F=\left\{T_{y}: y \in Y \backslash\{0\}\right\} \subset B(X, \mathbb{K})$. It follows that

$$
K:=\sup _{y \neq 0}\left\|T_{y}\right\|<\infty,
$$

(2 points)
(d) Finally, for each $y \neq 0$ and $x \in X$ we have

$$
\frac{|Q(x, y)|}{\|y\|}=\left\|T_{y}(x)\right\| \leq\left\|T_{y}\right\|\|x\| \leq K\|x\|
$$

or, equivalently,

$$
|Q(x, y)| \leq K\|x\|\|y\| .
$$

(4 points)

Since $Q(x, 0)=0$ for all $x \in X$ this inequality also holds for $y=0$.
(1 point)

Solution of problem $4(3+7+4+6=20$ points $)$
(a) Let X be a normed linear space and $V \subset X$ a linear subspace. For each $f \in V^{\prime}$ there exists $F \in X^{\prime}$ such that $F \upharpoonright V=f$ and $\|F\|=\|f\|$.
(3 points)
(b) For $i=1, \ldots, n$ define $f_{i}: V \rightarrow \mathbb{K}$ by setting

$$
f_{i}\left(c_{1} e_{1}+\cdots+c_{n} e_{n}\right)=c_{i}
$$

Clearly, $f_{i}: V \rightarrow \mathbb{K}$ is a linear map. By construction we have $f_{i}\left(e_{j}\right)=\delta_{i j}$. (3 points)
On the one hand, we can define the following norm on V :

$$
\left\|c_{1} e_{1}+\cdots+c_{n} e_{n}\right\|_{V}=\max \left\{\left|c_{1}\right|, \ldots,\left|c_{n}\right|\right\}
$$

On the other hand, the norm $\|\cdot\|$ on X is also a norm on V. Since V is finite-dimensional, the norms $\|\cdot\|$ and $\|\cdot\|_{V}$ are equivalent on V. In particular, there exists a constant $M>0$ such that $\|v\|_{V} \leq M\|v\|$ for all $v \in V$. If $v=c_{1} e_{1}+\cdots+c_{n} e_{n}$, then

$$
\left|f_{i}(v)\right|=\left|c_{i}\right| \leq \max \left\{\left|c_{1}\right|, \ldots,\left|c_{n}\right|\right\}=\|v\|_{V} \leq M\|v\|,
$$

which shows that $f_{i}: V \rightarrow \mathbb{K}$ is bounded.

(3 points)

Now apply the Hahn-Banach Theorem to extend the functionals f_{i} to all of X while preserving their norm.
(1 point)
(c) It is clear that $P e_{j}=e_{j}$ for all $j=1, \ldots, n$. For any $x \in X$ we have

$$
P^{2} x=\sum_{i=1}^{n} f_{i}(x) P e_{i}=\sum_{i=1}^{n} f_{i}(x) e_{i}=P x
$$

which shows that $P^{2}=P$.

(2 points)

We have

$$
\|P x\| \leq \sum_{i=1}^{n}\left|f_{i}(x)\right|\left\|e_{i}\right\| \leq\left(\sum_{i=1}^{n}\left\|f_{i}\right\|\left\|e_{i}\right\|\right)\|x\|,
$$

which shows that P is bounded.
(2 points)
(d) (i) $\operatorname{ran} P$ is finite-dimensional and hence closed. Since P is bounded ker P is also closed.
(2 points)
(ii) If $x \in \operatorname{ker} P \cap \operatorname{ran} P$, then $P x=0$ and $x=P y$ for some $y \in X$. This implies $x=P y=P^{2} y=P x=0$. Hence, ker $P \cap \operatorname{ran} P \subset\{0\}$. The reverse inclusion is trivial.
(2 points)
(iii) Let $x \in X$ be arbitrary, then $x=(I-P) x+P x$ and since $P(I-P) x=$ $P x-P^{2} x=P x-P x=0$ it follows that $x \in \operatorname{ker} P+\operatorname{ran} P$. Hence, $X \subset \operatorname{ker} P+\operatorname{ran} P$. The reverse inclusion is trivial.
(2 points)

