
Final Exam — Functional Analysis (WIFA–08)

Monday 9 April 2018, 18.30h–21.30h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. All answers need to be accompanied with an explanation or a calculation: only
answering “yes”, “no”, or “42” is not sufficient.

3. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (6 + 10 + 3 + 3 + 3 = 25 points)

Assume 0 < wk ≤ 1 for all k ∈ N and define the following normed linear space:

W =

{

x = (x1, x2, x3, . . . ) : xk ∈ K, sup
k∈N

|xk|wk < ∞

}

, ‖x‖W = sup
k∈N

|xk|wk.

(a) Prove that ‖ · ‖W is a norm on W.

(b) Prove that (W, ‖ · ‖W) is a Banach space.

(c) Recall the following Banach space from the lecture notes:

ℓ∞ =

{

x = (x1, x2, x3, . . . ) : xk ∈ K, sup
k∈N

|xk| < ∞

}

, ‖x‖∞ = sup
k∈N

|xk|.

Show that ℓ∞ ⊂ W and ‖x‖W ≤ ‖x‖∞ for all x ∈ ℓ∞.

(d) Assume infk∈Nwk > 0. Prove that ℓ∞ = W and that the norms ‖ · ‖∞ and ‖ · ‖W
are equivalent.

(e) Assume wk = 1/k for all k ∈ N. Show that the inclusion ℓ∞ ⊂ W is strict and
that the norms ‖ · ‖∞ and ‖ · ‖W are not equivalent on ℓ∞.

Problem 2 (4 + 6 + 5 + 5 + 5 = 25 points)

Let (X, ‖ · ‖) be an infinite-dimensional Banach space over K and let T ∈ B(X) be
of the form

Tx = f(x)z,

where f ∈ X ′ = B(X,K) and z ∈ X are fixed and nontrivial.

(a) Compute ‖T‖.

(b) Determine all eigenvalues of T .

(c) Show that T n = f(z)n−1T for all n ∈ N. Turn page for parts (d) and (e).
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(d) Assume that |λ| > ‖T‖. Show that

(T − λ)−1 = −
1

λ
−

1

λ(λ− f(z))
T.

(e) Determine ρ(T ) and hence σ(T ).

Problem 3 (5 + 3 + 7 + 5 = 20 points)

(a) Formulate the uniform boundedness principle.

Let X and Y be Banach spaces over K and let Q : X × Y → K be a bilinear map,
i.e. linear in the first entry and linear in the second entry. Assume that:

(i) ∀ x ∈ X ∃Mx ≥ 0 such that |Q(x, y)| ≤ Mx‖y‖ ∀ y ∈ Y ;

(ii) ∀ y ∈ Y ∃Ny ≥ 0 such that |Q(x, y)| ≤ Ny‖x‖ ∀ x ∈ X .

Prove the following statements:

(b) For each nonzero y ∈ Y the functional Ty ∈ L(X,K) defined by Ty(x) =
Q(x, y)/‖y‖ is bounded;

(c) supy 6=0 ‖Ty‖ < ∞;

(d) There exists K ≥ 0 such that |Q(x, y)| ≤ K‖x‖‖y‖ for all x ∈ X and y ∈ Y .

Problem 4 (3 + 7 + 4 + 6 = 20 points)

(a) Formulate the Hahn-Banach Theorem for normed linear spaces.

Let X be a normed linear space, and assume that V ⊂ X is a finite-dimensional
linear subspace. Let {e1, . . . , en} be a basis for V .

(b) Show that for each i = 1, . . . , n there exists fi ∈ X ′ such that fi(ej) = δij.

(c) Prove that the linear map

P : X → X, Px =

n
∑

i=1

fi(x)ei.

is a projection and bounded.

(d) Prove the following properties:

(i) ker P and ranP are closed;

(ii) ker P ∩ ranP = {0};

(iii) X = ker P + ranP .

End of test (90 points)
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Solution of problem 1 (6 + 10 + 3 + 3 + 3 = 25 points)

(a) Clearly, ‖x‖W ≥ 0 for all x ∈ W. If ‖x‖W = 0, then |xk|wk = 0 for all k ∈ N.
Since wk > 0 it follows that xk = 0 for all x ∈ W, which means that x = 0.
(2 points)

If λ ∈ K and x ∈ W, then

‖λx‖ = sup
k∈N

|λxk|wk = sup
k∈N

|λ||xk|wk = |λ| sup
k∈N

|xk|wk = |λ| ‖x‖W.

(2 points)

If x, y ∈ W, then

‖x+ y‖W = sup
k∈N

|xk + yk|wk

≤ sup
k∈N

(|xk|+ |yk|)wk

≤ sup
k∈N

|xk|wk + sup
k∈N

|xk|wk = ‖x‖W + ‖y‖W.

(2 points)

(b) Solution 1. Let xn be a Cauchy sequence in W. Let ǫ > 0 be arbitrary, then
there exists N ∈ N such that

m,n ≥ N ⇒ ‖xn − xm‖W ≤ ǫ,

or, equivalently,

m,n ≥ N ⇒ |xn
k − xm

k |wk ≤ ǫ for all k ∈ N. (1)

This shows that for fixed k ∈ N the sequence (xn
k) is a Cauchy sequence in K.

(2 points)

Since K is complete there exists xk ∈ K such that xn
k → xk as n → ∞. Now we

define x = (x1, x2, x3, . . . ) and show that x ∈ W and ‖xn−x‖W → 0 as n → ∞.
(2 points)

Lettingm → ∞ in equation (1) and using the fact that inequalities are preserved
under taking limits gives

n ≥ N ⇒ |xn
k − xk|wk ≤ ǫ for all k ∈ N,

or, equivalently,
n ≥ N ⇒ ‖xn − x‖W ≤ ǫ, (2)

which indeed shows that xn → x in W.
(3 points)

Note that equation (2) shows that xN − x ∈ W. Since xN ∈ W by assumption
and the fact that W is a linear space it follows that x = xN − (xN − x) ∈ W as
desired.
(3 points)
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Solution 2. Define the following linear map

T : W → ℓ∞, (x1, x2, x3, . . . ) 7→ (x1w1, x2w2, x3w3, . . . ).

It is clear that T is bijective and isometric, i.e., ‖Tx‖∞ = ‖x‖W.
(3 points)

If xn is a Cauchy sequence in W, then Txn is a Cauchy sequence in ℓ∞. Since ℓ∞

is complete there exists y ∈ ℓ∞ such that Txn → y. Since T−1 is also isometric,
and in particular bounded, it follows that xn → T−1y.
(7 points)

(c) Let x = (x1, x2, x3, . . . ) ∈ ℓ∞. Since 0 < wk ≤ 1 for al k ∈ N it follows that
|xk|wk ≤ |xk| for all k ∈ N which implies that

‖x‖W = sup
k∈N

|xk|wk ≤ sup
k∈N

|xk| = ‖x‖∞ < ∞,

which also implies that x ∈ W.
(3 points)

(d) Let c := infk∈N wk > 0 and x = (x1, x2, x3, . . . ). We have c ≤ wk for all k ∈ N

so that c|xk| ≤ |xk|wk for all k ∈ N. Taking the supremum gives the inequality
c‖x‖∞ ≤ ‖x‖W. Together with part (c) this shows that the norms ‖ · ‖W and
‖ · ‖∞ are equivalent. This also shows that ‖x‖∞ < ∞ whenever ‖x‖W < ∞ so
that W = ℓ∞.
(3 points)

(e) Take x = (1, 2, 3, 4, . . . ), then clearly ‖x‖W = 1 so that x ∈ W. However,
x /∈ ℓ∞, which means that the inclusion W ⊂ ℓ∞ is strict.
(2 points)

Now take xn = (1, 2, . . . , n, 0, 0, . . . ). Clearly, xn ∈ W ∩ ℓ∞ and

‖xn‖∞
‖xn‖W

= n → ∞.

Hence, there exists no constant c > 0 such that c‖x‖∞ ≤ ‖x‖W for all x ∈ ℓ∞.
(1 point)
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Solution of problem 2 (4 + 6 + 5 + 5 + 5 = 25 points)

(a) We have

‖T‖ = sup
x 6=0

‖Tx‖

‖x‖
= sup

x 6=0

|f(x)|‖z‖

‖x‖
= ‖z‖ sup

x 6=0

|f(x)|

‖x‖
= ‖f‖‖z‖.

(4 points)

(b) Since X is infinite-dimensional we can find w ∈ X such that z and w are linearly
independent. If f(z) = 0, then z ∈ ker T . If f(w) = 0, then w ∈ ker T . If
both f(z) 6= 0 and f(w) 6= 0, then x0 = f(w)z − f(z)w 6= 0 (since z and w are
linearly independent) and x0 ∈ ker T . This proves that 0 ∈ σp(T ).
(3 points)

Assume that Tx = λx for some nontrivial x ∈ X , then f(x)z = λz. Therefore,
x = cz for some constant c 6= 0. This gives

f(cz)z = λcz ⇒ f(z)z = λz ⇒ λ = f(z),

which means that f(z) is an eigenvalue of T . Hence, σp(T ) = {0, f(z)}.
(3 points)

(c) For n = 1 the statement is obvious. Assume that the statement is true for some
n ∈ N, then

T n+1x = T n(Tx)

= f(z)n−1T 2x

= f(z)n−1T (f(x)z)

= f(z)n−1f(x)Tz

= f(z)n−1f(x)f(z)z

= f(z)nTx,

which shows that the statement is also true for n+1. By induction the assertion
is true for all n ∈ N.
(5 points)

(d) Assume that |λ| > ‖T‖ so that ‖T/λ‖ < 1. The geometric series gives

(T − λ)−1 = −
1

λ

(

I −
T

λ

)−1

= −
1

λ

∞
∑

n=0

T n

λn

= −
1

λ
−

1

λ

( ∞
∑

n=1

f(z)n−1

λn

)

T

= −
1

λ
−

1

λ2

( ∞
∑

n=0

f(z)n

λn

)

T

= −
1

λ
−

1

λ(λ− f(z))
T.

(5 points)

— Page 5 of 9 —



(e) For all λ ∈ K \ {0, f(z)} the linear operator

Sλ = −
1

λ
−

1

λ(λ− f(z))
T

is well-defined and bounded since it is a linear combination of two bounded
operators (namely the identity and T ). Note that

(T − λ)Sλx = TSλx− λx = f(Sλx)z + x+
1

λ− f(z)
Tx

and that

f(Sλx)z = f

(

−
1

λ
x−

1

λ(λ− f(z))
Tx

)

z

= f

(

−(λ− f(z))x− f(x)z

λ(λ− f(z))

)

z

= −
1

λ(λ− f(z))

(

(λ− f(z))f(x) + f(x)f(z)
)

z

= −
1

λ− f(z)
Tx

which shows that (T −λ)Sλ = I. Likewise, it can be shown that Sλ(T −λ) = I.
This proves that (T −λ)−1 = Sλ ∈ B(X) for all λ ∈ K\{0, f(z)}, which implies
that K \ {0, f(z)} ⊂ ρ(T ).
(3 points)

On the other hand we already know that {0, f(z)} ⊂ σ(T ) so we actually have
ρ(T ) = K \ {0, f(z)} and σ(T ) = {0, f(z)}.
(2 points)
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Solution of problem 3 (5 + 3 + 7 + 5 = 20 points)

(a) Let X be a Banach space and let Y be a normed linear space. Let F ⊂ B(X, Y )
and assume that the set

M =
{

x ∈ X : sup
T∈F

‖Tx‖ < ∞
}

is nonmeager. Then the elements T ∈ F are uniformly bounded:

sup
T∈F

‖T‖ < ∞.

(5 points)

(b) Clearly, Ty is linear since Q is linear in the first component for fixed y. For each
x ∈ X we have the following inequality

|Ty(x)| =
|Q(x, y)|

‖y‖
≤

Ny

‖y‖
‖x‖.

This implies that Ty is a bounded linear operator from X to K.
(3 points)

(c) For each fixed y ∈ Y with y 6= 0 we have the inequality

|Ty(x)| =
|Q(x, y)|

‖y‖
≤

Mx‖y‖

‖y‖
= Mx for each x ∈ X.

(3 points)

Taking the supremum over y ∈ Y \ {0} gives

sup
y 6=0

|Ty(x)| < ∞ for each x ∈ X.

(2 points)

Since X is a Banach space we can apply the uniform boundedness principle to
the set F = {Ty : y ∈ Y \ {0}} ⊂ B(X,K). It follows that

K := sup
y 6=0

‖Ty‖ < ∞,

(2 points)

(d) Finally, for each y 6= 0 and x ∈ X we have

|Q(x, y)|

‖y‖
= ‖Ty(x)‖ ≤ ‖Ty‖‖x‖ ≤ K‖x‖

or, equivalently,
|Q(x, y)| ≤ K‖x‖‖y‖.

(4 points)

Since Q(x, 0) = 0 for all x ∈ X this inequality also holds for y = 0.
(1 point)
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Solution of problem 4 (3 + 7 + 4 + 6 = 20 points)

(a) Let X be a normed linear space and V ⊂ X a linear subspace. For each f ∈ V ′

there exists F ∈ X ′ such that F ↾V = f and ‖F‖ = ‖f‖.
(3 points)

(b) For i = 1, . . . , n define fi : V → K by setting

fi(c1e1 + · · ·+ cnen) = ci.

Clearly, fi : V → K is a linear map. By construction we have fi(ej) = δij .
(3 points)

On the one hand, we can define the following norm on V :

‖c1e1 + · · ·+ cnen‖V = max{|c1|, . . . , |cn|}.

On the other hand, the norm ‖ · ‖ on X is also a norm on V . Since V is
finite-dimensional, the norms ‖ · ‖ and ‖ · ‖V are equivalent on V . In particular,
there exists a constant M > 0 such that ‖v‖V ≤ M‖v‖ for all v ∈ V . If
v = c1e1 + · · ·+ cnen, then

|fi(v)| = |ci| ≤ max{|c1|, . . . , |cn|} = ‖v‖V ≤ M‖v‖,

which shows that fi : V → K is bounded.
(3 points)

Now apply the Hahn-Banach Theorem to extend the functionals fi to all of X
while preserving their norm.
(1 point)

(c) It is clear that Pej = ej for all j = 1, . . . , n. For any x ∈ X we have

P 2x =

n
∑

i=1

fi(x)Pei =

n
∑

i=1

fi(x)ei = Px,

which shows that P 2 = P .
(2 points)

We have

‖Px‖ ≤
n

∑

i=1

|fi(x)|‖ei‖ ≤

( n
∑

i=1

‖fi‖‖ei‖

)

‖x‖,

which shows that P is bounded.
(2 points)

(d) (i) ranP is finite-dimensional and hence closed. Since P is bounded ker P is
also closed.
(2 points)

(ii) If x ∈ ker P ∩ ranP , then Px = 0 and x = Py for some y ∈ X . This
implies x = Py = P 2y = Px = 0. Hence, ker P ∩ ranP ⊂ {0}. The
reverse inclusion is trivial.
(2 points)
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(iii) Let x ∈ X be arbitrary, then x = (I − P )x + Px and since P (I − P )x =
Px − P 2x = Px − Px = 0 it follows that x ∈ ker P + ranP . Hence,
X ⊂ ker P + ranP . The reverse inclusion is trivial.
(2 points)
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